

Bambu Analytics

Provides a simple, pluggable system for analytics

About Bambu Analytics

Bambu Analytics provides a simple system for implementing analytics
tools like Google Analytics into your Django projects, so you can track
page views, goals and events.

By default it supports Google’s Universal
Analytics [https://support.google.com/analytics/answer/2790010?hl=en-GB]
programme, but you interact with the package within JavaScript via the
bambu.analytics namespace. This way, you can change analytics
providers (or write your own) without changing the code within the rest
of your site.

This is massively a work-in-progress.

About Bambu Tools 2.0

This is part of a toolset called Bambu Tools. It’s being moved from a
namespace of bambu to its own ‘root-level’ package, along with all
the other tools in the set. If you’re upgrading from a version prior to
2.0, please make sure to update your code to use bambu_analytics
rather than bambu.analytics.

Contents

	Installation

	Usage

	The workflow

	Tracking an event

	Providers

	AJAX and client-side tracking

	Settings

Todo

	Implement ecommerce into the Universal Analytics provider

Questions or suggestions?

Find me on Twitter (@iamsteadman) or visit my blog [http://steadman.io/].

Indices and tables

	Index

	Module Index

	Search Page

Installation

Install the package via Pip:

pip install bambu-analytics

Add it to your INSTALLED_APPS list:

INSTALLED_APPS = (
 ...
 'bambu_analytics'
)

Next, install the tracking middleware:

MIDDLEWARE_CLASSES = (
 ...
 'bambu_analytics.middleware.AnalyticsMiddleware',
 ...
)

Also, make sure ‘django.core.context_processors.request’ is listed in your
TEMPLATE_CONTEXT_PROCESSORS settings otherwise Bambu AJAX won’t be able to access the current
request object.

Finally, set your Google Analytics ID:

ANALYTICS_SETTINGS = {
 'UniversalAnalyticsProvider': {
 'ID': 'UA-XXXXXXXX-XX'
 }
}

Or, use the shortcut setting:

GOOGLE_ANALYTICS_IDS = ('UA-XXXXXXXX-XX',)

(This is a legacy setting that will be deprecated in a future release)

Usage

By default, all page views will be tracked once you include the
tracking template tag in your base HTML template, like so:

<!DOCTYPE html>
<html>
 ...
 <body>
 ...
 {% load analytics %}{% tracking %}
 </body>
</html>

Tracking events are gathered by the middleware, as it allows trackable
events to be defined server-side. For example, when you submit an
enquiry form, you can add an event that will be tracked once the user is
redirected to the ‘thank you’ page.

The workflow

	The user requests a URL

	The analytics middleware adds a page-view event to its tracking list

	The view for that URL is rendered, and the script containing the
analytics setup code and the tracked event from step 2 is rendered

	The user submits a form on the page

	The view for that form calls bambu_analytics.track_event

	An HTTP redirect is issued

	The middleware reads the redirect and stores the tracking event in a
session variable

	The user’s browser is redirected to a ‘thank you’ page

	When the ‘thank you’ page is rendered, the tracking event stored in
the session variable are read into JavaScript and rendered

All of this sounds complex, but actually means you can track events more
easily and in a pluggable, product-agnostic way. It also provides the
option for server-side analytics events to be tracked.

In Google Analytics, the practical upshot is that it uses events rather
than goals, meaning you don’t have to manually define them in your
Analytics property.

Tracking an event

If you’re using a server-side provider - or you’ve written one, a:
please let me know! but b: - this method should work fine.

Trackable events

Providers

Changing analytics provider

Bambu Analytics supports the legacy (ua.js) and new (analytics.js)
scripts as provided by Google. ecommerce is setup to work with the old
style (ua.js), so if you need to track ecommerce events, you should
change the provider via your Django settings file:

ANALYTICS_PROVIDER = 'bambu_analytics.providers.google.GoogleAnalyticsProvider'

Writing your own provider

It’s pretty easy to write your own provider. Start by taking a look at
the two classes in bambu_analytics.providers.google to see how
they’re hooked up.

Essentially the job of a provider is to take Python objects that refer
to events and turn them into JavaScript objects and function calls that
your analytics library can understand.

Each provider needs to render a string. For client-side analytics tools
this should contain HTML with a <script> tag. The first thing inside
that tag should be:

{% include 'analytics/bambu.inc.js' %}

This exposes the bambu.analytics namespace. After all the code
needed to hook up the analytics tool and track basic events, your
provider should bind to the track event within bambu.analytics
like this:

bambu.analytics.on('track',
 function(e) {
 // e.event contains the name of the event, which you can compare
 // against the constants in the bambu.analytics namespace (they're)
 // the same as the ones within the Python package.

 // e.args contains a dictionary of arguments that you can use to map
 // the Python-defined keyword args (like 'category' or 'option_value')
 // to arguments that your specific analytics library understands. See
 // the templates/analytics/universal.inc.html file for an idea of
 // how this works.
 }
);

This way you can write an analytics provider that works on all sites
that use Bambu Analytics. Both of them!

Writing a server-side provider

If you want to track your own events or you have a server-side analytics
tool that you want to hook into, you’ll write a provider that focuses on
teh back- rather than front-end. You’ll still need to render something,
but this can be an empty string, or some sort of tracking pixel if
that’s the route you want to go down.

AJAX and client-side tracking

If you want to track events client-side, or you’re running a site that
uses a lot of AJAX (like Poddle.fm [http://poddle.fm/]), you’ll get
automatic access to the bambu.analytics namespace within JavaScript,
and you can call track() to handle client-side events or AJAX page
updates (ie: via window.pushstate).

Here’s an example event used on Poddle.fm when a user clicks the Play
button on an episode of a podcast:

<script>
 $('a.btn-play').on('click',
 function() {
 // Play the audio
 ...

 // Track the click event
 bambu.analytics.track(
 bambu.analytics.EVENT,
 {
 category: 'Audio',
 action: 'play'
 }
);
 }
);
</script>

Settings

Index

 _static/file.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/comment-bright.png

_static/down.png

_static/up.png

_static/comment-close.png

_static/down-pressed.png

_static/minus.png

_static/comment.png

nav.xhtml

 Table of Contents

 		Bambu Analytics

 		Installation

 		Usage

 		The workflow

 		Tracking an event

 		Trackable events

 		Providers

 		Changing analytics provider

 		Writing your own provider

 		Writing a server-side provider

 		AJAX and client-side tracking

 		Settings

_static/plus.png

